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Training for a few million timesteps



● Why study Soft Actor-Critic (SAC)?

Project Contributions:
● An easy-to-learn Pytorch implementation of SAC
● Additional analysis on what are the most important 

components for SAC
● Enhancing SAC with recent advances in DL



Source: SAC paper at https://arxiv.org/pdf/1801.01290.pdf

Why study SAC? Because it’s recent, it’s powerful and it’s robust.



An entropy term, related 
to exploration

A policy network, maps 
states to action, learns to 
take action with high 
q-value and high entropy

A value network and a 
target value network, 
learn the value of a state

2 q-value networks, 
learn the value of a 
state-action pair

SAC core elements: entropy and 5 networks

Source: OpenAI spinup



SAC is an off-policy algorithm 
and has a replay buffer
SAC can work with continuous 
and discrete (with modification) 
environments



Project part One

A Beginner-Friendly Pytorch Implementation of SAC, with focus to the following key 
points:
a. Consistent with OpenAI Spinup documentation: help our readers to easily get 

additional references for their study. 
b. A concise and minimal implementation. as simple as possible, without 

redundant structures.
c. Extensive documentation: write comments whenever needed, to make sure 

every line of the code is easy to understand.
d. Bug-free and Comparable performance: equivalent performance compared to 

the results in the SAC paper.

https://spinningup.openai.com
https://github.com/watchernyu/spinningup
https://github.com/watchernyu/hpc_setup

https://spinningup.openai.com
https://github.com/watchernyu/spinningup
https://github.com/watchernyu/hpc_setup


Project part Two Additional Analysis on SAC

Additional analysis on what are the most important components for SAC (not 
presented in the SAC paper)
a. SAC uses a relatively large hidden layer size, compared to other papers, is this 

a critical thing?
b. SAC uses a huge replay buffer that can take 1e6 data, can the buffer size be 

modified for improvement?



Testing environment: HalfCheetah and Ant Mujoco Environment
Each experiment takes ~20 hours to run. 







Conclusions:

● Relatively large networks (compared to other recent DRL works such as PPO) are 
critical to the performance of SAC, but this also means SAC can be slower in 
learning from the same amount of data. Hidden size of 256 is approximately 3x 
slower than a hidden size of 64, which is PPO’s default size.

● SAC’s replay buffer can be designed in more sophisticated fashion to count for data 
of different quality and improve performance.



Project part Three Enhancing SAC

Enhancing SAC with recent advances in DL
a. AMSGRAD optimizer in On the Convergence of Adam and Beyond (Reddi2018)
b. Use selu activation unit in Self-Normalizing Neural Networks (Klambauer2017)
c. Adding remaining time to agent observation, in Time Limits in Reinforcement 

Learning (Pardo2017)



On the convergence of adam and beyond by Reddi et al. (2018) proves that there is a flaw in the convergence of 
Adam and proposed AMSGrad which has better proven convergence property and empirically make training 
much faster in an array of supervised learning tasks.

https://openreview.net/forum?id=ryQu7f-RZ&utm_campaign=Revue%20newsletter&utm_medium=Newsletter&utm_source=piqcy


Self-Normalizing Neural Networks by Klambauer et al. (2017) proposed selu activation which can 
automatically normalize output activation after each layer, potentially making training much more stable

https://arxiv.org/abs/1706.02515


Time Limits in Reinforcement Learning  by Pardo et al. (2017) propose to add remaining environment 
time as a feature to the observation of RL agent to help them develop time-dependent behaviors that 
can result in higher return.

https://arxiv.org/abs/1712.00378


Conclusions:

● While AMSgrad makes learning a lot more effective in supervised learning tasks, it 
seems that it doesn’t work so well with SAC, results show that replacing Adam with 
AMSgrad decreases performance. More research is needed to see if its usage can 
be modified to fit the DRL environment (or other DRL algorithms).

● Selu in SAC significantly improve data efficiency in the more difficult Ant task. At the 
cost of 50% more wall clock time. Doesn’t make a difference on HalfCheetah.

● Being time-aware doesn’t improve performance significantly. It could be the 
environment termination flag in the SAC code makes time feature redundant. 



Thank You!

Questions are welcome!

A tutorial and empirical analysis on Soft 
Actor-Critic: a state-of-the-art DRL algorithm

● An easy-to-learn Pytorch implementation of SAC
● Additional analysis on what are the most important components for SAC
● Enhancing SAC with recent advances in DL
● (2 out of 5 modifications resulted in better performance than original paper)




