
Analyzing the Effect of Adversarial Training Examples on Reading
Comprehension Tasks

Che Wang
Tandon School of Enginnering,

New York University
cw1681@nyu.edu

Yanqiu Wu
Courant Institute,

New York University
yanqiu.wu@nyu.edu

Yiming Zhang
Courant Institute,

New York University
yiming.zhang@nyu.edu

Abstract

In evaluating reading comprehension tasks, re-
cent work by Jia and Liang (Jia and Liang,
2017) showed that most available models for
these tasks are not robust against adversar-
ial test examples. In this work, we study
whether adding adversarial examples to the
training set could improve the robustness of
the models. Using the MatchLSTM (Wang
and Jiang, 2016) model as a baseline and
the SQuAD dataset (Rajpurkar et al., 2016),
our work showed that even though adversarial
training examples does indeed make the model
more robust against noise in the test example,
it cannot help the model tackle delicately de-
signed adversarial sentences and might nega-
tively affects the performance on the original
clean SQuAD dataset.

1 Introduction

Extractive question and answering is a natural lan-
guage processing task where question and answer-
ing systems are given some reference text and
questions related to the text as inputs, from which
they predict a single answer, usually indicated as
a full sentence or a pair of indices of the original
supporting text.

Many recently published neural network-based
models, such as (Xiong et al., 2016) perform rela-
tively well on such tasks. However, recent work by
Jia and Liang shows that the performance of exist-
ing models drop dramatically when they are eval-
uated using adversarial examples (Jia and Liang,
2017).

To tackle such adversarial setting, we plan to
first study the effects of adding adversarial exam-
ples during training to see whether this improves
robustness.

2 Background

The recent Stanford Question and Answering
dataset (SQuAD)(Rajpurkar et al., 2016) is the
standard benchmark for evaluating reading com-
prehension tasks. The dataset consists of
100,000+ questions on 20000+ paragraphs derived
from 500+ Wikipedia articles. The answer to each
question is a segment of text from the reading pas-
sage, indicated by a pair of indices.

Amazon Mechanic Turk workers were em-
ployed to create the questions. On each paragraph,
they were tasked with asking up to 5 questions and
answering the questions by themselves based on
the content of the paragraph.

For question generation task, workers are en-
couraged to ask questions in their own words and
highlight answers in the original paragraph.

For the answer generation task, in order to
get a better indication of human performance on
SQuAD, each crowd worker was tasked with an-
swering additional questions so that at least two
additional answers were obtained for each ques-
tion. For this answer task, each crowd worker was
shown only the questions along with the passage,
and asked to select the shortest span in the para-
graph that answered the question.

Many recently published neural network-based
models have performed relatively well on these
datasets. For example, Xiong et al.(Xiong et al.,
2016) introduced the Dynamic Contention Net-
works that achieved a 75.9% F1 score on SQuAD
test dataset. Kenton Lee et al.(Lee et al., 2016)
have proposed a Recurrent Span Representations
model (RASOR), which have two BiLSTM layers
for question and passage respectively. Their model
has reached a 75.5% F1 score on SQuAD, com-
pared to 91.2% F1 score of human performance.
However, a recent study by Jia and Liang(Jia and
Liang, 2017) took into question the robustness of



these models. They found that by inserting dis-
tracting sentences into each passage, the accuracy
of sixteen published models drop drastically. The
adversarial sentences were automatically gener-
ated to distract computer systems without chang-
ing the correct answer or misleading humans. The
accuracy of sixteen published models drops from
an average of 75% F1 score to 36%; when the
adversary is allowed to add ungrammatical se-
quences of words, average accuracy on four mod-
els decreases further to 7% (Jia and Liang, 2017).
As a long term goal, we hope to develop more ro-
bust models that can defend against these adver-
sarial examples. For this particular project, we
will first attempt to understand how the adversar-
ial examples are generated and how incorporating
adversarial results into training can affect the end
results.

3 Method

We study the effects of adding adversarial ex-
amples to the training set and test them against
adversarial test examples. We will use the
MatchLSTM(Wang and Jiang, 2016) model as our
baseline model for comparison.

3.1 Dataset

We modify and use the Stanford Question Answer-
ing Dataset (SQuAD)(Rajpurkar et al., 2016) by
expanding it with adversarial components for each
passage-question-answer tuples.

The SQuAD dataset is a relatively large dataset
with 100,000+ questions, designed for the reading
comprehension task. Each data entry is in the form
of a text sequence and several questions related to
the text. The model’s task is to find an answer span
within the text for each question.

3.2 Adding Adversarial Training Examples

Jia and Liang (Jia and Liang, 2017) used two ap-
proaches for adding adversarial examples to the
passage, which they refer to as AddSentand
AddAny. However, these methods either re-
quire crowdsourcing efforts (AddSent) or are
extremely computationally intensive (AddAny).
We devised a modified version of of the
AddAnymethod which would allow as to generate
a sizable amount of adversarial training examples
within a reasonable time frame.

In the AddAny1method, to generate a distract-
ing sentence with 10 words in the passage. We

Figure 1: A question-answer pair example from the
SQuAD dataset(Rajpurkar et al., 2016)

first create a set S by randomly sampling 20 words
from the 1000 most common English words from
the Brown Corpus (Francis and Kucera, 1979) and
adding all the words from the question to the set
S. We first sample four words from the question
and three words from the common English words
in the Brown Corpus. We will then sample the
remaining three words from the set S. This sen-
tence is then placed in a random position within
the passage (the restriction being that it lies be-
tween two sentences, i.e. it will not break apart
any sentence in the passage). The AddAny2and
AddAny3methods are similar to AddAny1where
the only difference being that two distracting sen-
tences and three distracting sentences are added to
random positions in the passage respectively.

The AddFrontand AddEndmethods are vari-
ations of AddAny1where instead of placing the
distracting sentence in any position in the passage,
the sentence is placed at the front and the end of
the passage respectively.

3.3 Model

We use the MatchLSTM model proposed by Wang
and Jiang (Wang and Jiang, 2015)(Wang and
Jiang, 2016) to evaluate the effects of adding ad-
versarial training examples.

The MatchLSTM model was originally pro-
posed for the problem of text entailment (Wang
and Jiang, 2015) where two statements (a hypoth-
esis and a premise) are compared to determine



the relationship between the two statements. The
model can be applied to the reading comprehen-
sion task by treating the question as premise and
the passage as the hypothesis.

On a high level, the MatchLSTM model takes
an embedding of the passage and question, passes
them through their own LSTM layers respectively
to generate hidden states for the question and pas-
sage. These hidden states are then passed through
the Match LSTM layer which uses an attention
mechanism to determine the degree of matching
between the question and different sentences in the
passage. The results are then passed into the final
pointer layer which outputs a probability distribu-
tion over pointer positions in the passage to deter-
mine the correct answer.

The key to the model lies in the MatchLSTM
layer and the answer-pointer layer which we will
further elaborate on below.

MatchLSTM Layer
It uses a word-by-word mechanism to gener-

ate attention weight vectors where each attention
weight αij indicates the degree of matching be-
tween the ith token in the passage and the jth to-
ken in the question. These attentions weights are
then used to obtain a weighted version of the ques-
tions concatenated with the current tokens in the
passage to form a vector which is then fed into
a one direction LSTM to form the MatchLSTM
layer. This is done both in the forward and reverse
directions.

Answer Pointer Layer
Since in the SQuAD dataset, all answers are re-

stricted to spans of words in the passage. Hence
the goal is to obtain a probability distribution over
the spans of words in the passage given the ques-
tion. The Pointer Network proposed by (Vinyals
et al., 2015) is appropriate for handling this par-
ticular kind of output. In essence, the pointer net-
work gives a probability distribution over differ-
ent positions in the text. For the reading compre-
hension task, (Wang and Jiang, 2016) used two
approaches which they refer to as the sequence
model and the boundary model.

In the sequence model, the pointer network
treats the answer as a sequence of tokens taken
from the passage while ignoring the fact that the
answer must be a consecutive sequence of words
from the passage. Hence the answer will be repre-
sented by a sequence of integers a1, a2, ... where
ai is an integer between 1 and P for a passage of

length P .
In the boundary model, the pointer network

only predicts the start and end points of the answer
as and ae.

The MatchLSTM model is summarized in Fig-
ure 2 and 3.

Figure 2: An overview of the sequence model from
(Wang and Jiang, 2016)

Figure 3: An overview of the boundary model from
(Wang and Jiang, 2016)

4 Results

We trained six different models with different
training datasets, and then each of them is evalu-
ated on four different test sets:
Original is a test set from the original SQuAD
dataset. Since the official test set is hidden, we



instead used the original ”dev” set as the test set,
and the validation set we used for training is split
from the original training set. These datasets,
already split, are available on Xingdi Yuan’s
MatchLSTM repository1.

We generated the datasets AddAny1, AddAny2,
and AddAny3 (see Section 3.2). AddOneSent
and AddBestSent are 2 adversarial test sets cre-
ated in (Jia and Liang, 2017), these are down-
loaded directly from their public Codalab page.
They are both generated using a set of sophisti-
cated rules and refined using Amazon Mechanical
Turk workers to ensure that the adversarial sen-
tences have a higher degree of similarity to the
question compared to the actual phrase containing
the ground truth answer. For both of these adver-
sarial datasets, the distracting sentence is added to
the end of the passage. The difference between
AddBestSent and AddOneSent is that AddBest-
Sent involves a picking the sentence that yields the
lowest F1 score based on calls to the MatchLSTM
baseline model whereas AddOneSent is a human
approved sentence picked by Amazon Mechanical
Turk workers.

Tables 1-3 compares the results from using dif-
ferent training sets to train the model when tested
against different test sets. In all three tables, the
rows indicate the training set used and the columns
indicate which test sets were used.

4.1 Model Analysis

During the training process, there is no significant
difference among the 6 training settings. As
shown in figure 4 and figure 5, The validation loss
at each epoch is about the same, indicating each
model is learning to generalize on their respective
training datasets. In terms of training time, the
training sets with more noise in them also take
more time to train, for example, AddAny3 training
set takes 15% more time than original training set.
This is mainly because the modified training sets
have larger data size and longer sentences.

At test time, as shown in table 1, Original model
has the lowest loss when tested against the original
SQuAD dataset, while AddAny1, AddAny2and
AddAny3models have lower losses when tested
against AddAny1, AddOneSent and AddBestSent

1see https://github.com/xingdi-eric-yuan/MatchLSTM-
PyTorch

test datasets. Hence, we may conclude that when
inserting adversarial sentences into training data,
the trained model becomes more robust when test-
ing with noise, but the noise in training data also
affects its performance on original clean passages
without adversarial examples.

This conclusion is also supported by the F1
scores and exact match scores of the models,
where Original model has the highest F1 score and
exact match scores among the six models when
testing on original SQuAD dataset. However, the
models AddAny1, AddAny2and AddAny3have
slightly better F1 scores and exact match scores on
the test datasets where adversarial sentences are
inserted, as shown in table 2 and table 3. Also
these three models have test results very similar to
each other which indicates that the number of ad-
versarial sentences we added to each training pas-
sage does not strongly affect model performance.

Moreover, AddEndmodel works best on the
AddOneSent and AddBestSent test datasets but
not the Original and AddAny1 test datasets, be-
cause AddOneSent and AddBestSent test sets both
have their adversarial examples inserted at the end.
This result is consistent with the results in the orig-
inal Jia and Liang’s paper(Jia and Liang, 2017)
that the model learns to ignore the last sentence
instead of truly distinguish the noise from the pas-
sage.

The above discovery is also supported by
the performance of AddFrontmodel which
has much worse performance on the AddOne-
Sent and AddBestSent test dataset. However,
AddFrontalso has slightly worse performance
on the rest test datasets among the six mod-
els. This result supports the statement in Jia and
Liang’s paper (Jia and Liang, 2017) that prepend-
ing adversarial sentence to the beginning of the
passage would violate the expectation of the first
sentence being a topic sentence.

Original AddAny1 AddOneSent AddBestSent
Original 3.17 3.60 4.69 5.71
AddEnd 4.68 4.76 4.14 3.79
AddFront 5.94 5.81 7.60 8.69
AddAny1 3.26 3.27 4.43 5.21
AddAny2 3.27 3.28 4.39 5.14
AddAny3 3.29 3.30 4.47 5.25

Table 1: Loss of evaluated models

4.2 Error Analysis

We analyze a sub-selection of errors made during
test time. We find that models trained with



Figure 4: Validation f1 score with respect to training
epoches

Figure 5: Validation exact match score with respect to
training epoches

training data that has random noise in them indeed
cannot tackle delicately designed adversarial sen-
tences that aim to trick the model. The following
type of error is made by Any3 model, tested on
AddBestSent testset, but this kind of error is also
commonly seen in all trained models. Clearly,
the model still makes many mistakes where it
selects some words in the last sentence, which
is the incorrect answer designed to trick the model.

Example Error 1:
Story: the broncos took an early lead in super bowl 50 and

never trailed . newton was limited by denver ’s defense ,

which sacked him seven times and forced him into three

turnovers , including a fumble which they recovered for a

touchdown . denver linebacker von miller was named super

bowl mvp , recording five solo tackles , 2 sacks , and two

forced fumbles . otto baker plays the position of goalie .

Question: what position does von miller play ?

Prediction: goalie

Answers: [’linebacker’]

F1: 0.0

We also found a very interesting type of error,
the following error is also found in the AddAny3

Original AddAny1 AddOneSent AddBestSent
Original 0.70 0.64 0.46 0.35
AddEnd 0.64 0.61 0.57 0.58
AddFront 0.60 0.57 0.38 0.29
AddAny1 0.68 0.68 0.45 0.36
AddAny2 0.68 0.68 0.47 0.38
AddAny3 0.68 0.68 0.46 0.37

Table 2: F1 score of evaluated models

Original AddAny1 AddOneSent AddBestSent
Original 0.59 0.54 0.34 0.25
AddEnd 0.52 0.50 0.42 0.42
AddFront 0.49 0.47 0.27 0.19
AddAny1 0.56 0.56 0.33 0.25
AddAny2 0.57 0.57 0.35 0.27
AddAny3 0.57 0.57 0.34 0.26

Table 3: Exact match score of evaluated models

model when tested against AddBestSent testset,
and also found in other trained models. Note that
the model gave a very long prediction, with the
correct prediction at the beginning following by
several sentences. And it gets only 0.08 f1 score.
It’s unclear how the model learns this behavior,
one possible explanation is that during training,
the model has seen some data that have relatively
long ground truth answers and the model is trying
to predict the full answer. But it’s also possible
that the model tries to predict long sentences so
that it gets at least a small portion of the score,
instead of no score at all. A different evaluation
method might have impact on this kind of behav-
ior. This is an observation from our error data and
more serious research might be required before
we can really understand this kind of behavior.

Example Error 2:
Story: major events also play a big part in tourism in victoria

, particularly cultural tourism and sports tourism . most of

these events are centred on melbourne , but others occur

in regional cities , such as the v8 supercars and australian

motorcycle grand prix at phillip island , the grand annual

steeplechase at warrnambool and the australian international

airshow at geelong and numerous local festivals such as the

popular port fairy folk festival , queenscliff music festival ,

bells beach surfclassic and the bright autumn festival . other

tourist events happened in adelaide outside of perth .

Question: where do other tourist events happen in victoria

outside of melbourne ?

Prediction: regional cities , such as the v8 supercars and

australian motorcycle grand prix at phillip island , the grand

annual steeplechase at warrnambool and the australian

international airshow at geelong and numerous local festivals

such as the popular port fairy folk festival , queenscliff

music festival , bells beach surfclassic and the bright autumn



festival

Answers: [’regional cities’]

F1: 0.08

5 Future Work

Clearly, simply adding adversarial examples to the
training set is insufficient in making reading com-
prehension more robust against adversarial test ex-
amples using the MatchLSTM baseline model.

As a next step, we plan to first conduct ad-
ditional tests on the R3, or Reinforced Reader-
Ranker (Wang et al., 2017) model which currently
offers state-of-the-art performance on the SQUAD
dataset. We plan to modify the ranker mechanism
in R3 in hopes of improving the models robust-
ness.

6 Collaboration

The following are the team collaboration details
for this project, in terms of which tasks are mainly
assigned to which persons.
Study details of adversarial NLP papers: Yanqiu, Yiming,

Che

General literature search for relevant work: Yiming, Yanqiu

Retrieve addSent test data from Codalab: Yiming, Yanqiu

Adversarial data generator coding: Yanqiu

Understand Match-LSTM Pytorch open source implementa-

tion: Che

Modify training process to take in generated data: Yanqiu,

Che

Modify implementation to for test sets evaluation and

plotting: Che

Manage and running jobs on HPC: Yiming, Che

Report introduction and background section: Yiming, Yanqiu

Report method section: Yiming, Yanqiu, Che

Report result and analysis section: Che

Report reference organization:Yanqiu, Yiming

7 Reproducibility

All the code we use are hosted on this Github
repository: https://github.com/watchernyu/

MatchLSTM-Analyze-Adversarial-Training

8 Acknowledgement

We would like to thank Professor Kyunghyun Cho
and Professor Sam Bowman for their great support
and guidance throughout the project. Thank you to

Professor Keith Ross for discussing the project de-
tails with us. Thanks to Nikita Nangia for her ad-
vice on the project and thank you to Xingdi Yuan
for the support he provided as we build on top of
his MatchLSTM open source implementation.



References
W Nelson Francis and Henry Kucera. 1979. Brown

corpus manual. Brown University 2.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328 .

Kenton Lee, Tom Kwiatkowski, Ankur P. Parikh, and
Dipanjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. CoRR
abs/1611.01436.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 .

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems. pages 2692–2700.

Shuohang Wang and Jing Jiang. 2015. Learning nat-
ural language inference with lstm. arXiv preprint
arXiv:1512.08849 .

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang,
Tim Klinger, Wei Zhang, Shiyu Chang, Gerald
Tesauro, Bowen Zhou, and Jing Jiang. 2017. Rein-
forced reader-ranker for open-domain question an-
swering. arXiv preprint arXiv:1709.00023 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .


